物理学 No.6

曲げ

1. いままでは、一様な材質の物質について考えてきた. これからは、もう少し実際問題としてとらえていこう.

建物や橋, 歯の補綴物などの構造物を作るとき, その強度を増したいと考えたとする. ヤング率 Y の大きい物質を使えばよいだろう. 断面積も大きければ大きいほどよい. しかし, 材料を買うお金は大丈夫だろうか. 構造物を作るスペースはあるのか. 例えば, 口の中は小さいので, 強度のある補綴物を作るのにも大きさが限られることになる. いたずらに柱を太くしてしまうと, 部屋が小さくなってしまう. そこで少し工夫しなければならない.

(a) アルミパイプのイスの脚が中空になっているのはなぜだろう?

(b) 電車のレールが I 字形になっているのはなぜだろう?

2. 中立面を図を描いて説明しなさい.

- 3. 直径 $d=0.60~{
 m mm}$ の断面をもつ,長さ $L=10~{
 m mm}$ のコバルトクロム合金線の片持ち梁がある.
 - (a) m=0.050 kg の荷重をかけたとき、曲げモーメントの最大値 $M_{\rm max}$ は何 N·m か.

(b) この合金線の断面二次モーメントが $I=6.4\times10^{-15}~\mathrm{m}^4$ のとき、断面係数 Z は何 m^3 か.

$$Z = \frac{I}{d/2} = \frac{6.4 \times 10^{-15}}{0.3 \times 10^{-3}} = 21.3 \times 10^{-12} = 2.1 \times 10^{-11}$$

(c) 応力の最大値 σ_{max} は何 Pa か.

$$\sigma_{\text{max}} = \frac{H_{\text{max}}}{Z} = \frac{4.9 \times 10^{-3}}{24.3 \times 10^{-12}} = 2.3 \times 10^8 \, \text{Pa}$$

4. 直径 $d=0.46~{
m mm}$ の断面をもつ,長さ $L=10~{
m mm}$ のチタン合金線の片持ち梁がある. (a) $m=0.020~{
m kg}$ の荷重をかけたとき,曲げモーメントの最大値 $M_{
m max}$ は何 $N\cdot {
m m}$ か.

(b) この合金線の断面二次モーメントが $I=2.2\times 10^{-15}~\mathrm{m}^4$ のとき,断面係数 Z は何 m^3 か.

(c) 応力の最大値 σ_{max} は何 Pa か.

5. 今日の講義でわかったこと・わからなかったこと・感想など書きなさい. また,午後の実験についても書きなさい. (自由記載)