特殊相対論 No.2

速度の合成則

- 1. 静止系 *K* からの観測
 - (a) 静止系 K から見て,速さ V で動く座標系 K' の原点の座標 X および速さ v で動く物体の位置 x を求め,以下の表を完成させなさい.

t (s)	X (m)	V (m/s)	x (m)	v (m/s)
0	0		0	
1				
2				
3				
4				
5		+0.5		+1
6				
7				
8				
9				
10				

- (b) 縦軸に K 系の時刻 t,横軸に K 系からみた位置 x, X をとって,上の表をグラフに描きなさい.傾きは速さを表すので,以下では $\tan\theta=V$, $\tan\varphi=v$ としよう.
- 2. 速さVで動くK'系からの観測
 - (a) 速さ V で動いている系 K' から見て,K 系の原点の位置 X' と物体の位置 x',およびそれぞれの速 さ V',v' を求め,以下の表を完成させなさい.

[t' [s]	X' (m)	V' (m/s)	x' (m)	v' (m/s)
0	0		0	
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

- (b) **2.** の表の値を、**1.** で描いたグラフの中から読み込むために K' 系の世界線上に時刻 t' の目盛をとりなさい.
- **3.** 2つの座標系から見た物体の速さv, v'の関係式(速度の合成則)を求めなさい.

4.	(速度の合成則) $t-x$ 座標系で、	O(0, 0),	A(10, 0),	B(10, 5),	C(10, 10) とする.
		0(0,0),	11(10, 0),	2(10, 0),	0(10, 10) = 7 01

(a) K'系から見た物体の速さv'をグラフから読み取りなさい.

(b) 三角形 OBC に対して正弦定理を使うことによって, $v' = \frac{BC}{OB}$ を計算し、速度の合成則を導出しなさい.

5. Galilei 変換の式は

$$\begin{cases} t' = t \\ x' = x - Vt \end{cases} \tag{1}$$

と書くことができる。

(a) 式 (1) から、速度の合成則を導きなさい. $v' = \frac{dx'}{dt'}$ を計算する.

(b) もう一度で微分することにより、加速度を求めなさい. $a' = \frac{dv'}{dt'}$ を計算する. Newton の運動方程式は、Galilei 変換に対して不変であるか.

6. 今日の講義でわかったこと・わからなかったこと・感想などを書きなさい. (自由記載)