動力学 No.12 運動方程式を解く(7)減衰振動

$$\begin{cases} x(t+\epsilon) &= x(t) + \epsilon \ v\left(t + \frac{\epsilon}{2}\right) \\ v\left(t + \frac{\epsilon}{2}\right) &= v\left(t - \frac{\epsilon}{2}\right) + \epsilon \ a(t) \end{cases}$$

ここで, $a(t)=-\omega_0^2x(t)-\frac{2\mu}{m}v(t-\frac{\epsilon}{2})$ である.また, $\epsilon=0.50$ s, $\omega_0=\sqrt{\frac{k}{m}}=1.0$ rad/s, $\frac{2\mu}{m}=0.20$ s $^{-1}$ とし,小数第 4 位を四捨五入しなさい.

時刻 t〔s〕	位置 $x(t)$ [m]	速さ $v(t)$ [m/s]	加速度 $a(t)$ $[m/s^2]$
0	x(0) = 1.0	v(0) = 0.0	a(0) = -1.0
		$v(\frac{\epsilon}{2}) = v(0) + \frac{\epsilon}{2}a(0)$	
ϵ		=-0.25	-0.825
		-0.663	
2ϵ			-0.411
		-0.868	
3ϵ			0.064
		-0.836	
4ϵ			0.476
		-0.598	
5ϵ		-	0.727
		-0.235	
6ϵ		-	0.772
		0.151	
7ϵ		-	0.619
	= -0.650	0.461	
8ϵ		-	0.327
		0.624	
9ϵ			-0.018
		0.615	
10ϵ			-0.324
		0.453	
11ϵ		0.100	-0.518
110		0.194	0.010
12ϵ		0.101	-0.563
120		-0.087	0.000
13ϵ			-0.463
130		-0.319	0.100
14ϵ		0.010	-0.257
1-10		-0.448	0.201
15ϵ		0.440	-0.008
196	= 0.098	****	-0.008
	— 0.090		

- 1. x-t グラフを描きなさい.
- **2.** 同じ座標系に,振動運動 (動力学 No.11),臨界運動 (動力学 No.12-2),過減衰 (動力学 No.12-3) の x-t グラフも書き込みなさい.

3. Newton の運動方程式

$$\frac{d^2x}{dt^2} + 0.2\frac{dx}{dt} + x = 0\tag{1}$$

を解くことを考えよう.

- (a) 解の形を $x(t)=e^{\lambda t}$ と仮定しよう. これを微分方程式に代入して, λ に対する二次方程式をもとめよう.
- (b) 上の二次方程式を解いて、 λ_1 と λ_2 を求めなさい.
- (c) 解は A, B を定数として,

$$x(t) = Ae^{\lambda_1 t} + Be^{\lambda_2 t} \tag{2}$$

と書くことができる. オイラーの公式 $e^{i\theta} = \cos\theta + i\sin\theta$ を使って x(t) を書き直しなさい.

- (d) 上で求めた x(t) を t で微分して速さ v(t) を求めなさい.
- (e) 初期条件 x(0) = 1, v(0) = 0 から定数を求め、x(t) を決定しなさい.

- 4. 日常生活の中で、減衰振動の例をあげ説明しなさい.
- 5. 今日の講義でわかったこと・わからなかったこと・感想などを書きなさい. (自由記載)

動力学 No.12-2 運動方程式を解く (8) 臨界振動

$$\begin{cases} x(t+\epsilon) &= x(t) + \epsilon \ v\left(t + \frac{\epsilon}{2}\right) \\ v\left(t + \frac{\epsilon}{2}\right) &= v\left(t - \frac{\epsilon}{2}\right) + \epsilon \ a(t) \end{cases}$$

ここで, $a(t)=-\omega_0^2x(t)-\frac{2\mu}{m}v(t-\frac{\epsilon}{2})$ である.また, $\epsilon=0.50$ s, $\omega_0=\sqrt{\frac{k}{m}}=1.0$ rad/s, $\frac{2\mu}{m}=2.0$ s $^{-1}$ とし,小数第 4 位を四捨五入しなさい.

時刻 t [s]	位置 x(t) [m]	速さ $v(t)$ [m/s]	加速度 $a(t)$ $[m/s^2]$
0	x(0) = 1.0	v(0) = 0.0	a(0) = -1.0
		$v(\frac{\epsilon}{2}) = v(0) + \frac{\epsilon}{2}a(0)$	
ϵ	0.875	=-0.25	-0.375
		-0.438	
2ϵ	0.656		0.219
		-0.328	
3ϵ	0.492		0.164
		-0.246	
4ϵ	0.369		0.123
		-0.185	
5ϵ	0.277		0.092
		-0.138	
6ϵ	0.208		0.069
		-0.104	
7ϵ	0.156		0.052
		-0.078	
8ϵ	0.117		0.039
		-0.058	
9ϵ	0.088		0.029
		-0.044	
10ϵ	0.066		0.022
		-0.033	
11ϵ	0.050		0.016
		-0.025	
12ϵ	0.038		0.012
		-0.018	
13ϵ	0.029		0.009
		-0.014	
14ϵ	0.022		0.007
		-0.010	
15ϵ	0.014		0.005

1. x-t グラフを描きなさい.

2. Newton の運動方程式

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 0\tag{3}$$

を解くことを考えよう.

- (a) 解の形を $x(t)=e^{\lambda t}$ と仮定しよう. これを微分方程式に代入して, λ に対する二次方程式をもとめよう.
- (b) 上の二次方程式を解きなさい. この場合は重解となっている.
- (c) 解 λ は一つしかないので、定数変化法によって解を求める。解の形はA、Bを定数として

$$x(t) = (At + B)e^{\lambda t} \tag{4}$$

と書くことができる. この解をtで微分して,速さv(t)を求めなさい.

(d) 初期条件 x(0) = 1, v(0) = 0 から定数 A, B を求め、解の形 x(t) を決定しなさい.

- 3. 日常生活の中で、減衰振動の例をあげ説明しなさい.
- 4. 今日の講義でわかったこと・わからなかったこと・感想などを書きなさい. (自由記載)

動力学 No.12-3 運動方程式を解く (9) 過減衰

$$\begin{cases} x(t+\epsilon) &= x(t) + \epsilon \ v\left(t + \frac{\epsilon}{2}\right) \\ v\left(t + \frac{\epsilon}{2}\right) &= v\left(t - \frac{\epsilon}{2}\right) + \epsilon \ a(t) \end{cases}$$

ここで, $a(t)=-\omega_0^2x(t)-\frac{2\mu}{m}v(t-\frac{\epsilon}{2})$ である.また, $\epsilon=0.50$ s, $\omega_0=\sqrt{\frac{k}{m}}=1.0$ rad/s, $\frac{2\mu}{m}=3.0$ s $^{-1}$ とし,小数第 4 位を四捨五入しなさい.

時刻 t〔s〕	位置 x(t) 〔m〕	速さ $v(t)$ $[\mathrm{m/s}]$	加速度 $a(t)$ $[m/s^2]$
0	x(0) = 1.0	v(0) = 0.0	a(0) = -1.0
		$v(\frac{\epsilon}{2}) = v(0) + \frac{\epsilon}{2}a(0)$	
ϵ	0.875	=-0.25	-0.125
		-0.313	
2ϵ	0.719		0.219
		-0.203	
3ϵ	0.618		-0.008
		-0.207	
4ϵ	0.515		0.107
		-0.153	
5ϵ	0.439		0.023
		-0.142	
6ϵ	0.368		0.059
		-0.112	
7ϵ	0.312		0.026
		-0.099	
8ϵ	0.263		0.036
		-0.081	
9ϵ	0.223		0.022
		-0.070	
10ϵ	0.188		0.024
		-0.058	
11ϵ	0.159		0.017
		-0.049	
12ϵ	0.135		0.016
		-0.041	
13ϵ	0.115		0.013
		-0.035	
14ϵ	0.098		0.011
		-0.029	
15ϵ	0.084		0.009

1. x-t グラフを描きなさい.

2. Newton の運動方程式

$$\frac{d^2x}{dt^2} + 3\frac{dx}{dt} + x = 0\tag{5}$$

を解くことを考えよう.

(a) 解の形を $x(t)=e^{\lambda t}$ と仮定しよう. これを微分方程式に代入して, λ に対する二次方程式をもとめよう.

(b) 上の二次方程式を解いて、 λ_1 と λ_2 を求めなさい.

(c) 解は A, B を定数として, $x(t) = Ae^{\lambda_1 t} + Be^{\lambda_2 t}$ と書くことができる. x(t) を書き下しなさい.

(d) 上で求めた x(t) を t で微分して速さ v(t) を求めなさい.

(e) 初期条件 x(0) = 1, v(0) = 0 から定数を求め, x(t) を決定しなさい.

3. 日常生活の中で、過減衰の例をあげ説明しなさい.

4. 今日の講義でわかったこと・わからなかったこと・感想などを書きなさい. (自由記載)