特殊相対論 No.1

Galilean transformation

- 1. 静止系 K からの観測
 - (a) 静止系 K から見て,速さ V で動く座標系 K' の原点 X および速さ v で動く物体の位置 x を求め,以下の表を完成させなさい.

t (s)	X [m]	V (m/s)	x (m)	v (m/s)
0	0		0	7 - 0 - 1
1	0.5		1	
2	1		2	
3	1.5		3	
4	2	E en di Pir subst.	4	rae-t- c
5	2.5	+0.5	5	+1
6	3		6	
7	3,5		7	41/0 1
8	4		8	_ 1 ,
9	4,5		9	A A A I W
10	5		10	

- (b) 縦軸に K 系の時刻 t,横軸に K 系からみた位置 x, X をとって,上の表をグラフに描きなさい.これを時空図 (space-time diagram) といい,軌跡を世界線 (world line) という.t 軸からの傾きは速さを表すので,以下では $\tan\theta=V$, $\tan\varphi=v$ としよう.
- 2. 速さVで動くK'系からの観測
 - (a) 速さVで動いているK'系から見て,K系の原点 x'_K と物体の位置x',およびそれぞれの速さ v'_K ,v'を求め,以下の表を完成させなさい.

t' (s)	x'_{K} (m)	v_K' (m/s)	x' [m]	v' [m/s]
0	0		0	
1	-0.5		0.5	
2	-1	= d, m-1 = 1	1	
3	-1.5		1.5	
4	-2		2	
5	-2,5	-0.5	2,5	+0.5
6	- 3		3	COLD S N
7	-3,5	5-70 - 51 M	3.5	7-10-17
8	-4		4	15 J # 4 S 3
9	-4,5		4.5	
10	-5	Į ę	5	17/=2

- (b) **2.** の表の値を、**1.** で描いたグラフの中から読み込むために K' 系の世界線上に時刻 t' の目盛を とりなさい。時空図上で x' 座標は、t' 軸に平行な線を x 軸に下せば読むことができる.
- (c) 世界線の傾きが速さを表している。K' 系から見た速さ (2. の表の値) をグラフから読み取りなさい.
- 3.2つの座標系から見た物体の位置 x, x' の関係式を求めなさい.

$$\chi = \chi - \chi t$$

$$\begin{pmatrix} t' \\ x' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -V & 1 \end{pmatrix} \begin{pmatrix} t \\ x \end{pmatrix} \tag{1}$$

と書くことができる.

(a) この行列式が1であることを確かめなさい.

$$\begin{vmatrix} 1 & 0 \\ -V & 1 \end{vmatrix} = 1 - 0 = 1$$

(b) 上の式 (1) を t, x について解き、Galilei 変換の逆変換を求めなさい。逆行列を求めてもよい。

$$\begin{pmatrix} t \\ \chi \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ V & 1 \end{pmatrix} \begin{pmatrix} t' \\ \chi' \end{pmatrix}$$

5. 時空面積保存則 (特殊相対論 No.6 5. 参照)

(a) $\tan \theta = V$ としたとき, $\cos \theta$, $\sin \theta \in V$ で表しなさい.

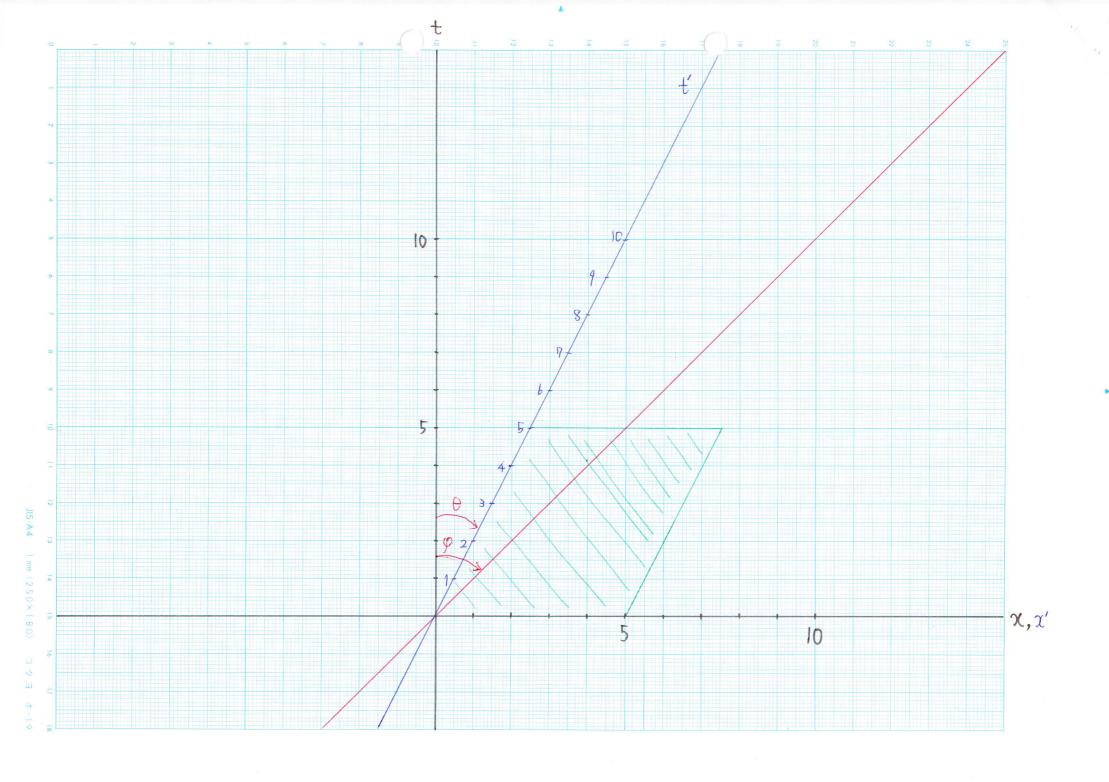
$$\cos^{2}\theta + \sin^{2}\theta = 1 + 1$$

$$1 + \tan^{2}\theta = \frac{1}{\cos^{2}\theta}$$

$$(t = to^{2})^{2}$$

$$\cos\theta = \sqrt{\frac{1}{1 + \tan^{2}\theta}} = \frac{1}{\sqrt{1 + \sqrt{2}}}$$

$$\cos\theta = \sqrt{\frac{1}{1 + \tan^{2}\theta}} = \sqrt{\frac{1}{1 + \sqrt{2}}}$$


(b) 長さが 1 と $\alpha_c = \sqrt{1+V^2}$ の 2 辺が角 $(\frac{\pi}{2}-\theta)$ で交わっている平行四辺形を描いて、その面積が 1 となることを示しなさい.

$$S = 1 \times \alpha_{c} \times \sin\left(\frac{\pi}{2} - \theta\right)$$

$$= \sqrt{1 + V^{2}} \times \left(\sin\frac{\pi}{2}\cos\theta - \cos\frac{\pi}{2}\sin\theta\right)$$

$$= \sqrt{1 + V^{2}} \cos\theta = \sqrt{1 + V^{2}} \times \frac{1}{\sqrt{1 + V^{2}}} = 1$$

6. 今日の講義でわかったこと・わからなかったこと・感想などを書きなさい. (自由記載)

